Yarr — dataflow-фреймворк (обработки изображений) на Хаскеле
7 мин

Зондирование обстановки на Реддите показало, что едва ли хоть кто-то всерьез занимается обработкой изображений на Хаскеле, несмотря на то, что достаточно популярная библиотека Repa предполагает работу с изображениями как одно из основных приложений. Надеюсь, ситуацию сможет изменить библиотека Yarr (документация, гитхаб).
Я называю библиотеку dataflow-фреймворком, потому что она обобщена для обработки массивов (от одномерных до трехмерных) элементов любых типов, в том числе векторов чисел, например координат, комплексных чисел. Но основное предполагаемое применение — обработка двумерных массивов из векторов цветовых компонент, т. е. изображений. Фреймворк непосредственно не содержит алгоритмов обработки изображений, а предоставляет мощную инфраструктуру для их написания.


NUMA (Non-Uniform Memory Access — «Неравномерный доступ к памяти» или Non-Uniform Memory Architecture — «Архитектура с неравномерной памятью») — технология совсем не новая. Я бы даже сказала, что совсем старая. То есть, в терминах музыкальных инструментов, это уже даже не баян, а, скорее,
Я поделюсь 30 практиками для достижения максимальной производительности приложений, которые этого требуют. Затем, я расскажу, как применил их для коммерческого продукта и добился небывалых результатов!








Когда я учился писать многопоточные приложения — я перечитал кучу литературы и справочной информации по этой области. Но между теорией и практикой — огромная пропасть. Я набил кучу шишек, и до сих пор иногда получаю по голове от собственных потоков. Для себя я выработал набор некоторых правил, которым стараюсь строго следовать, и это значительно помогает мне в написании многопоточного кода.